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The Scheduling Problem in Queueing
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Deciding which queues to serve at each time step to optimize performance

metrics like delay, waiting time, or throughput.
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Why Finite-Time Queue Scheduling is Critical
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open-sourced KAI Scheduler Google Borg
Bursty, non-stationary workload, millisecond-level lease granularity

Question: Can we speak about fundamental limits at time 7" (not just steady
state), and design policies that hit those limits?
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MaxWeight Policy

De facto policy: MaxWeight (Back-pressure) policy

® Asymptotic (steady-state) guarantees: throughput-optimality (stability
for all rates in the interior of the capacity region), diffusion optimality in
heavy traffic for many settings
- [Tassiulas & Ephremides, 2002], [Stolyar, 2004],
[Mandelbaum & Stolyar, 2004], [Dai & Lin, 2008]

® Limitations of MaxWeight in finite-time regime

- MaxWeight tends to pick extreme schedules, and transient backlogs
can grow large before averaging effects [Shah & Wischik, 2006],
[Bramson, D'Auria, Walton 2021] (validated in our experiments)

Gap: little is known theoretically about its parameter-dependent performance
and fundamental limitations in non-asymptotic settings
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Central Questions

How can we formulate a finite-time language (minimax framework) for the

scheduling problem in queueing systems?

Within this framework, what is the minimum achievable queue length by
time 777

Can MaxWeight attain this minimum?

If not, what alternative scheduling policies can possibly achieve it, and
under what conditions?
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Key Answers

Finite-time information-theoretic lower bound: first minimax framework
for the scheduling problem in queueing; fundamental limit for any
scheduling policy

MaxWeight is not minimax-optimal: In finite-time regime, its backlog
exceeds the lower bound by a geometry-dependent factor

Introducing LyapOpt policy: Minimizes the full Lyapunov drift (first-
and second-order terms). LyapOpt matches the lower bound up to
absolute constants

Extensive simulations: LyapOpt consistently outperforms MaxWeight

across a wide range of scenarios

5/34



Bridging Queueing Control and Learning Theory

® Not just regret. Most learning results study regret when the model is
unknown (RL). Here we ask: even if the model is known (oracle DP),

what is the best achievable performance in finite time under randomness?
® Queueing as structured DP. Single-hop SPNs give a clean DP testbed.
We build an information-theoretic toolkit for finite-horizon analysis
(instead of only steady-state/asymptotic results).
® Fundamental limits, which motivate algorithms. We prove minimax
lower bounds that hold for any policy, and design policies that match
them—giving sharp benchmarks for short-horizon control.

6/34



Related Works: Key Areas

® Finite-horizon analyses in queueing.
® Challenging even for simple M /M /1. [Abate & Whitt, 1987]
® Convergence-to-steady-state via coupling/spectral methods—not
finite-time backlog with explicit scaling. [Robert, 2013; Gamarnik &
Goldberg, 2013]
® Results for specific policies/topologies, e.g., JSQ; do not cover general
scheduling. [Luczak & McDiarmid, 2006; Ma & Maguluri, 2025]
® Parameter learning in queueing (unknown rates, partial feedback).
® Queueing regret. [Krishnasamy, Sen, Johari, Shakkottai, 2021];
[Stahlbuhk, Shrade, Modiano, 2021]; [Freund, Lykouris, Weng, 2023]
® Time-averaged queue length. [Yang, Srikant, Ying, 2023]
® Adversarial stability (AQT). Focus on universal stability/delay, not
time-T" backlog scaling. [Borodin, Kleinberg, Raghavan, Sudan,
Williamson, 2001]
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Related Works: Key Areas (Cont.)

® Lower bounds for structured DP.
® Queueing control is computationally hard (curse of dimensionality).
[Papadimitriou & Tsitsiklis, 1987]
® One work on delay lower bound: G/D/1 queue. [Gupta & Shroff,
2009]
® Drift-method limitations and alternatives.
® Classical Lyapunov drift targets stability/steady-state performance.
[Eryilmaz & Srikant, 2012; Maguluri & Srikant, 2016]
® Drift-plus-penalty is a steady-state tradeoff framework. [Neely, 2010]
® These are largely asymptotic and first-order; they do not directly yield
finite-time minimax bounds with explicit parameter dependence.
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Outline

Part 1: Problem Setup & Minimax Framework

Part 2: General Lower Bounds

Part 3: Finite-Time Performance Guarantees

Part 4: Experiments

Goal in mind: Explain a finite-time, parameter-explicit theory for single-hop
scheduling; show a gap for MaxWeight; present a policy (LyapOpt)
outperforms better in theory and experiments.
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Part 1: Problem Setup & Minimax Framework



Problem Setup: Single-Hop SPN

Discrete-time single-hop SPN with n parallel queues.

® Q(t): Queue length vector at time t.

® A(t): Arrival vector at time ¢.
A(t) = E[A(t)]: Mean arrival rate vector.

® Scheduling set D; C R’ : Each D(t) € D; is a "schedule” (jobs
departing). The “generalized switch model” [Stolyar, 2004].

Queueing Dynamics

Q(t+1) =max{Q(t) — D(¢),0} + A(t+1), t>0

with Q(0) = 0.
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Problem Setup: Arrival Processes

® Adversarial Arrivals and Departure Sets: {A(t), D;}:>0 chosen by an
adversary, potentially with arbitrary dependencies.

® Stochastic Arrivals and Fixed Departure Set (special case): {A(t)}+>0
is i.i.d. with mean A. D; = D fixed.

Definition (Capacity region)
I, = {y € R} : v < d, for some d € conv(Dy)}.

9,

9,

Assumption
A(t) € pll; for all t >0, p € (0,1].
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Problem Setup: Policy

History: H; = {(Do, D(0), A(1)), ..., (Dy_1, D(t — 1), A(t)), D:}.

Policy
A policy ® = {¢+}t>0- ¢t : Hy — Probability distribution over D,

® D(t) € D; is chosen according to the distribution ¢ (H:).

Goal: Minimize cumulative queue length
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Minimax Criteria

Standard approach in statistics [Wald, 1945], optimization [Nemirovsky &
Yudin, 1978], and machine learning to study finite-sample (finite-horizon)
difficulty.

When no exact limit is known, quantify the best achievable performance
via the infg sup ,, criterion.
Traditionally concerning regret due to model uncertainty and partial

feedback; extends to queueing control and (stochastic) DP oracle here.

First minimax formulation for finite-time fundamental limits of scheduling
policies.
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Minimax Criteria: Performance Metrics

® Total Queue Length: captures the overall system backlog

E lz Qi(T)

This is a (stochastic) Dynamic Programming problem:

Objective at t depends on all past decisions.
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Minimax Criteria: Model Classes

Model Classes: Arrival Process and Scheduling Set

General class M”(C, B):

{(A(.), {D:}) : A(t) € pIL, % ZVar(Ai(t)) < C? vt > 0;
i=1
I 2 e
gzdi < B?, VdeDt},
=1

® p € (0,1]: Traffic intensity. p — 1 is “heavy traffic”
® C > 0: Arrival variability; can generalize to random departure as well.

® B > 0: Scheduling set diameter.
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Minimax Criteria: Fundamental Lower Bound

Goal: find the fundamental minimax lower bound at time 7"

inf sup ]E<I>,(A(-),D) [Z QZ(T)‘| .
=1

® (A().{D:HeMP(C,B)

® First-ever minimax formulation for finite-time fundamental limitations of
queueing control
® Offers a principled approach to quantifying the hardness of structured

dynamic scheduling problems
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Part 2: General Lower Bounds



Theorem: Lower Bounds — Fundamental Limit

Theorem (General Lower Bounds)

For any scheduling policy, and for arrival processes and scheduling sets within the model class MP (C, B), the
following lower bound holds:

For all T > cqo ( (o) 2 + 1), there is a unified lower bound that covers both the heavy-traffic (p — 1)
and interior (p € (0 1)) regimes:

nC?
inf sup E Q;(T)| > ¢ mln{nC\/ } + /7 pB,
@ Mp(c,s) ! "B(1-0p)

where cg and c1 are positive absolute constants.
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General Lower Bounds: Proof Blueprint

Proof sketch (high level).

© Reduce DP to partial sums. Lower bound the queueing recursion by a
functional of the supremum over time of partial sums of random variables.
In the oracle DP (known parameters), use stochastic-process lower bounds
rather than statistical tools (Le Cam/Fano).

@ Deviation via Gaussian / random walk. Couple to a Gaussian or random
walk, combine a sharp proxy bound with an approximation error. Heavy
traffic (p—1): mean-zero v/T-type lower bound. Interior (p€(0,1)):
negatively drifted walk with (1 — p)~" behavior.

© Gaussian-to-general approximation error. Control the approximation
error via strong-approximation techniques, e.g., the
Komlés—Major—Tusnady (KMT) coupling, which provides uniform (in
time) coupling with quantifiable error terms.
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Implications of Lower Bounds

® Bounds explicitly quantify scaling with:
® Time horizon T’
® Variance parameter of arrival C' (no B for heavy-traffic p — 1)
® Number of queues n

® |n interior cases, constant scaling with 1%,)

¢ Fundamental Benchmark: No policy can guarantee better than nCv/T

nC?

Bl=p) (interior) scaling in finite horizon.

(heavy-traffic) or

® Next Step: Introduce a novel algorithm that matches this lower bound by
explicitly optimizing both first- and second-order Lyapunov terms,

addressing the identified gap.
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Part 3: Finite-Time Performance Guarantees



Optimal Lyapunov Policy (LyapOpt)

Recall: Q(t+ 1) = max{Q(t) — D(t),0} + A(t + 1)

LyapOpt policy

At each time ¢, select D(t) as the solution to:

D(t) € argminz (max{Qi(t) — di,0})?

deD
€ =1

® Minimizes a derandomization of the Lyapunov (V(z) = ||=||3) drift:
AV(#)=EV(Q(t+1)—Alt+ 1)) — V(Q(t) — A(t)) | He].
® Novelty: Optimizes the full one-step Lyapunov drift, including

second-order terms.

® Stability: LyapOpt is throughput optimal (i.e., stable in interior regime).

Smaller Lyapunov drift than MaxWeight = positive recurrence in one line.
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General Lyapunov Drift Analysis
® For any policy, arrival processes and scheduling sets in M(C, B):
One-step Lyapunov drift:

AV(t) < f(Q(1), D(1)) +7(Q(t), A(t + 1))

where f(Q( {22@ Jrz cl2 ‘ Ht]

first-order term second-order term

and E[r(Q(t), A(t + 1))] = 32", Var(Aq(t + 1)).

® Summing over time and applying Jensen's and Cauchy—Schwarz

inequalities:
E[ Q)] <ny| Y@, DO)/n+ (T =1 + Y E[A(T))
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Theorem: Finite-Time Performance of LyapOpt

Theorem (Finite-Time Performance of the LyapOpt Policy)
Within MP?(C, B), if \(t) € D for all t > 0, the LyapOpt policy achieves:

E[Z Q,-(T)} <nCVT —1+ Zn:E[Ai(T)]

® When \(t) € D¢, LyapOpt perfectly matches the arrival rate and achieves
the fundamental lower bound (up to a constant factor), establishing its

finite-time optimality.
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MaxWeight Policy

MaxWeight policy

Selects schedules DM#eig" (1) according to:

DMV (1) ¢ argmax (Q(t), d)
deD

® Optimizes the first-order Lyapunov term, prioritizing queues with larger
backlogs.
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Theorem: Upper Bound of MaxWeight Policy

FQW),d) =E[2) " Qit)(Ni(t) — di) + Y _(dF = \(®)°) | He
i=1 =1
first—ord‘,er term second—;::ler term

Theorem (Upper Bound of MaxWeight Policy)
Under M?(C, B), the MaxWeight policy satisfies

E|Y QiT)| <

(B +C2)(T — 1 +Z]E[A

Limitation of MaxWeight (and drift-based methods)

® |gnores second-order effects

® Always selects extreme points, fails to adapt to arrival-rate geometry
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MaxWeight Lower Bound (Dimension 2)

Proposition

There exists a family of instances with p € (0,1], B >3v2and 1 <C < B,
for which the expected total queue lengths under MaxWeight satisfy:

2 1
i CvT BT§ B? C?
MaxWeight
: T ] > L T2+ 5 9.
[Z @ ( ) 24/ 267T \/g c?

lim sup E

p=lme(c,B) L

In particular, there exists an instance in M (0, B) with B > 3+/2 and

2
1
E{Z Qli-yapOPt(T):| —o_ =~ T>1,
— V2B

- MaxWeight \/ﬁ 232 \[B
E{ZQZ' )] 2 2v2er’ L/iBl-‘ =4 {( - W
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MaxWeight Lower Bound (Dimension 2)

Construction: Consider the scheduling set and arrivals

D={deR*:d=xz(b0)+ (1 —x)(0,1),0 <z <1},
A(t)=(1,(b—1)/b) for all t > 1, and A(0) = (1,(b—1)/b—¢),

with b = /2B
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MaxWeight Lower Bound (Dimension 2)

Proof Sketch:

® MaxWeight’s Selection Rule:

® MaxWeight always choose extreme points (0,1) or (b,0);

® At each time ¢, MaxWeight selects (b, 0) unless gfgi; > b.

® Queue Dynamics under MaxWeight:
® (Q2(t) accumulates to b before the first use of (0, 1).
® Using (0,1) increases Q1(t) to 2.
® To use (0, 1) again, Q2(t) must build up to 2b.
® This alternating pattern causes Q2(t) to grow at rate VbT over a
finite horizon T.
® Contrast with LyapOpt:
® Always chooses the "true arrival” schedule (1, (b —1)/b).
® Maintains constant queue lengths O(1).
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MaxWeight Lower Bound (Dimension 2)

Common in wireless networks and data centers.

o0 High- d i
gh-speed service
— [N (b.0)

Shared
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m Low-speed service
MaxWeight Behavior:

® Qver-prioritizes Q1 via extreme-point selection.
® (Q2(t) builds up due to limited service.

® Highlights MaxWeight's finite-time inefficiency.

LyapOpt Contrast:

® Adapts to arrival asymmetry.

® Prevents backlog in this special case.
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Part 4: Experiments



MaxWeight Lower Bound (Dimension 2)

Empirical Validation: The /BT gap is substantial for practical T and B

Total queue length performance when B = 10

Performance across different B values
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Figure: Performance comparison of MaxWeight and LyapOpt policies versus B
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Experiments with More Queues

Experimental Setup

® Scheduling Set D: 10n integer vectors uniformly sampled from [1,10]".

® Arrival Rates: 2000 vectors sampled from the boundary of the capacity
region II.

® Arrival Distributions: Binomial with variance 1, matching the sampled

arrival rates.

® Simulation: 1000 time slots, averaged over 100 runs per scenario.
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Experiments with More Queues

® ratio — Total Queue Length (LyapOpt) at ¢ = 1000
ratio = i Queue Length (MaxWeight) at ¢ = 1000

Table: Proportion of scenarios with ratio below 1, 0.9, and 0.5

Number of Queues (n) ratio <1 ratio < 0.9 ratio < 0.5

2 84.7% 25.9% 0%

3 97.5% 54.1% 36.3%
4 99.9% 78.5% 46.1%
5 100% 67.0% 31.3%
6 97.4% 71.3% 26.5%
7 100% 90.0% 45.9%
8 100% 80.7% 35.9%

® LyapOpt achieves consistently better performance than MaxWeight for
n =2 to 8.

® Significant improvements observed in many cases (ratio < 0.5).
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Representative Case Study (n = 8 Queues)
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Figure: Finite-time comparison of MaxWeight and LyapOpt policies (n = 8).

® Both policies show /T growth in total queue length and linear T' growth
in squared queue length.

® LyapOpt yields lower total queue length and better balance.
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Summary

Exposed a finite-time gap between MaxWeight and the minimax lower
bound.

Proposed LyapOpt, a second-order Lyapunov policy that closes this gap.
Theory & simulations: LyapOpt yields shorter queues than MaxWeight
over finite horizons.

Clarifies the limitations of drift-based (first-order) methods in transient
regimes.

Complements steady-state analyses: revealing interesting finite-time,
parameter-dependent phenomena (e.g., geometric structure and

second-order effects).
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Future Directions

Multi-hop networks. Extend lower bounds and LyapOpt-style policies
beyond single hop. Needs global version (like Back-pressure).
Model geometry. In G/G/1, the feasible set D is a weighted simplex;
refined analysis to common decision sets.
Unknown parameters.

® Unknown arrival rates: seamlessly covered by our work.

® n-queue, m-server systems with unknown service rates: requires

UCB-type exploration with backlog-aware exploitation.

Computation. MaxWeight solves a linear problem over D (often LP /
min-cut—-max-flow); LyapOpt involves a quadratic objective over
D—design fast approximations and oracle reductions.
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